Protected vegetables

Integrated Pest Management (IPM) in vegetable cultivation

Integrated Pest Management (IPM) is a comprehensive and sustainable approach to pest and disease management that has revolutionized modern agriculture. In the context of professional vegetable cultivation, IPM plays a pivotal role in ensuring both crop health and environmental sustainability.

Understanding IPM

IPM is a holistic and proactive strategy that goes beyond the conventional 'chemical-first' approach to pest control. It integrates various methods to effectively manage pests, diseases, and other threats while minimizing environmental and human health impacts. IPM strategies encompass a range of practices, including biological control, cultural practices, mechanical control, and the judicious use of compatible pesticides when necessary.

Emphasizing Sustainability

One of the fundamental principles of IPM is its commitment to sustainability. By reducing the reliance on chemical pesticides, IPM helps preserve soil health, water quality, and biodiversity. This sustainable approach safeguards the long-term viability of agricultural systems, ensuring that future generations can continue to farm and thrive.

Benefits of IPM in vegetable cultivation

  1. Reduced chemical dependency: IPM reduces the need for chemical pesticides, minimizing the risk of harmful residues on vegetables. This is crucial for meeting stringent food safety standards and consumer demand for pesticide-free produce.

  2. Cost-effective: Implementing IPM can result in improved profitability for growers. By using targeted interventions and only applying pesticides when necessary, leading to higher yields and increased profitability.

  3. Preservation of beneficial insects: IPM recognizes the importance of beneficial organisms in pest control. Avoiding broad-spectrum pesticides allows natural enemies and pollinators, such as predatory mites and bees, to thrive.

  4. Pesticide resistance: Overreliance on chemical pesticides can lead to resistance of pests. IPM's diversified approach reduces the likelihood of pests developing resistance, ensuring its long-term effectiveness.

  5. Improved crop quality and yield: IPM practices, such as regular scouting for pests and diseases, help identify issues early, allowing for timely interventions and preserving crop quality and yield.

  6. Environmental conservation: By minimizing the use of synthetic chemicals, IPM contributes to a healthier environment. Reduced chemical runoff protects water quality and supports biodiversity and overall ecosystem balance.

  7. Compliance with regulations: IPM aligns with increasingly stringent regulations on pesticide use, making it easier for growers to comply with legal requirements.

Western Flower Thrips Frankliniella occidentalis on a leaf
Western Flower Thrips Frankliniella occidentalis on a leaf

Common pests in vegetable crops

Vegetable pests can inflict serious damage in terms of plant growth and crop yield. The most common pests in vegetable crops are aphids, whitefly, thrips, leaf miners, mealybugs, caterpillars, spider mites and other mites. Learning more about these vegetable pests is an important step into understanding how to control them.

Biological pest control in vegetable crops

Vegetable cultivation faces numerous challenges, including pests that threaten crop health and yield. While conventional methods often rely on chemical pesticides, there's a sustainable and eco-friendly alternative known as biological pest control. Biological control, also known as biocontrol, is a natural approach to pest management. Instead of resorting to chemical solutions, biocontrol leverages the power of living organisms to control and mitigate pest populations. These organisms can be predators, parasitic wasps, or beneficial fungi that specifically target the pests causing harm to crops.

Beneficial insects, mites, nematodes and microorganisms

Looking at biological control, beneficial insects, mites, nematodes and microorganisms take center stage. Natural enemies like predatory mites and parasitic wasps are effective solutions in vegetable crops. Parasitic wasps parasitise on pests such as aphids, leaf miners, whitefly, mealybugs and scales keeping their populations in check. Predatory mites prey on spider mites and other mites, thrips, whitefly and eggs of moths. Beneficial nematodes control soil-dwelling pests like beetle larvae, and foliar pests like caterpillars. Beneficial fungi control insect pests like whitefly and thrips.

  • Whitefly control

    Whitefly control

    Biological control of whiteflies in vegetable cultivation is an eco-friendly and effective approach that relies on natural enemies and beneficial micro-organisms. Several beneficial organisms play a crucial role in controlling whitefly, including parasitic wasps, predatory mites, predatory bugs and entomopathogenic fungi.

    Parasitic wasps

    Eretmocerus eremicus (Ercal) and Encarsia formosa (En-Strip, Enermix), both parasitic wasps, play a vital role by parasitizing whitefly nymphs, reducing their populations significantly. Eretmocerus eremicus and Encarsia formosa are parasitic wasps that lay their eggs inside whitefly nymphs. When the wasp larvae hatch, they consume the whitefly nymphs from the inside, ultimately killing them. These parasitic wasps are highly effective in reducing whitefly infestations.

    Entomopathogenic fungi

    Lecanicillium muscarium (Mycotal), a naturally occurring fungus, acts as a bio-insecticide, infecting and killing whiteflies, thus curbing their numbers. It attaches itself to the whitefly's body and subsequently releasing enzymes to break down the insect's cuticle, leading to its death.

    Predatory bugs

    Macrolophus pygmaeus (Mirical, Mirical-N), a predatory bug, preys on whitefly nymphs and other small insects, providing biological control. Its voracious appetite for whitefly nymphs helps maintain their populations at manageable levels.

    Integrating these natural enemies into an overall pest management strategy in vegetable farming helps maintain whitefly populations at manageable levels while reducing the need for chemical pesticides, contributing to healthier and more sustainable crop production.

  • Spider mite control

    Spider mite control

    Biological control of spider mites and other plant-damaging mites in agriculture relies on beneficial organisms to maintain pest populations at manageable levels. Several key natural enemies play a crucial role in the biological control of mites including predatory mites, gall midges and predatory bugs.

    Predatory mites

    Phytoseiulus persimilis (Spidex, Spidex Vital, Spidex Vital Plus) and Neoseiulus californicus (Spical, Spical-Plus, Spical Ulti-Mite), both predatory mites, are highly effective at consuming spider mites, making them valuable allies in controlling mite infestations. Predatory mites control spider mites and other mites through direct predation, actively seeking out and consuming their prey. They lay their eggs near mite colonies, ensuring a continuous food supply for their offspring. Predatory mites can prevent infestations by suppressing pest mite populations.

    Gall midges

    The gall midge Feltiella acarisuga (Spidend) preys on spider mite eggs, reducing their numbers in agricultural settings. Gall midges, like Feltiella acarisuga, control mites by laying their eggs near mite colonies. Their larvae feed on mite nymphs, effectively reducing mite populations. They offer preventive and curative control, have a rapid life cycle, and are host-specific, making them valuable in integrated pest management.

    Predatory bugs

    Macrolophus pygmaeus (Mirical, Mircal-N), a predatory bug, may contribute to mite control as it feeds on various small insects, including certain mite species. Predatory bugs control spider mites and other mites by actively hunting and feeding on them. They locate mite colonies and use their specialized mouthparts to pierce and suck out their body contents. This direct predation helps keep mite populations in check, reducing the damage they cause to plants. Predatory bugs are effective natural enemies in integrated pest management strategies, as they target harmful mites without harming crops.

  • Thrips control

    Thrips control

    Biological control of thrips relies on the use of beneficial organisms to manage their populations sustainably. Several key natural enemies play a vital role in controlling thrips including predatory mites, beneficial nematodes and predatory bugs.

    Predatory mites

    Predatory mites control thrips by actively hunting and feeding on them. These predatory mites locate thrips on plants, capture them, and use their specialized mouthparts to pierce and consume them. This direct predation helps keep thrips populations in check, reducing the damage they cause to crops. Important predatory mites species for thrips control are:

    Beneficial nematodes

    The beneficial nematode, Steinernema feltiae (Entonem), targets thrips larvae and pupae in the soil. They enter the thrips' body, releasing symbiotic bacteria that kill the pest from within.

    Predatory bugs

    The predatory bugs Orius laevigatus (Thripor-L) and Orius insidiosus (Thripor-I) are voracious predators of thrips. They are known for their efficient hunting and can significantly reduce thrips populations in crops.

    Entomopathogenic fungi

    Lecanicillium muscarium (Mycotal), a fungal species, controls thrips by infecting and killing them. When applied to areas infested with thrips, the fungal spores attach to the thrips' bodies and subsequently penetrate their cuticles. Once inside, the fungus develops, ultimately leading to the death of the thrips.

  • Aphid control

    Aphid control

    Biological control of aphids involves various natural predators and parasitoids that manage their populations sustainably.

    Parasitic wasps

    Parasitic wasps such as Aphelinus abdominalis (Aphilin), Aphidius ervi (Ervipar), Aphidius colemani (Aphipar), Aphidius matricariae (Aphipar-M), Praon volucre, Ephedrus cerasicola (Aphiscout) control aphids by laying their eggs inside aphids. Once the wasp larvae hatch, they feed on the aphids from within, eventually causing the aphids to die. This parasitic behavior disrupts aphid populations, reducing their numbers and minimizing damage to plants.

    Gall midges

    Gall midges such as Aphidoletes aphidimyza (Aphidend) control aphids by laying their eggs near aphid colonies. When the midge larvae hatch, they actively seek out aphids and feed on them, effectively reducing aphid populations. This predation helps protect plants from aphid damage and contributes to integrated pest management strategies.

    Lacewings

    Lacewings such as Chrysoperla carnea (Chrysopa, Chrysopa-E) control aphids by hunting and consuming them. The adult lacewings and their larvae actively seek out aphid colonies, where they use their sharp mouthparts to pierce and feed on aphids. This predation helps keep aphid populations in check, reducing plant damage and making lacewings valuable natural enemies in pest management programs.

    Entomopathogenic fungi

    Lecanicillium muscarium (Mycotal), a naturally occurring fungus, acts as a bio-insecticide, infecting and killing aphids. Lecanicillium muscarium controls aphids by infecting them with fungal spores, which attach to the aphid's body and penetrate its cuticle. Once inside, the fungus grows and multiplies, ultimately killing the aphid.

    Predatory beetles

    Adalia bipunctata (Aphidalia), commonly known as the two-spotted ladybug, controls aphids primarily through predation. Ladybugs, both in their adult and larval stages, are voracious eaters of aphids. One of the notable advantages of Adalia bipunctata is its ability to consume a substantial number of aphids in a relatively short time span. Adult ladybugs can devour dozens of aphids per day, while their larvae, can consume even more. Furthermore, Adalia bipunctata lays clusters of eggs near aphid infestations. Once hatched, the ladybug larvae immediately start feeding on aphids.

  • Caterpillar control

    Caterpillar control

    Biological control of caterpillar pests involves various natural enemies such as beneficial nematodes and predatory bugs.

    Beneficial nematodes

    Beneficial nematodes, such as Steinernema feltiae (Entonem) and Steinernema carpocapsae (Capsanem), play a role in caterpillar control by parasitizing caterpillar larvae. These nematodes enter their host caterpillar and release symbiotic bacteria that kill the caterpillar from within. As a result, caterpillar populations are naturally managed, providing an eco-friendly approach to pest control in horticulture.

    Predatory bugs

    Predatory bugs, such as Macrolophus pygmaeus (Mirical), are known for their voracious appetites and their ability to actively hunt and consume caterpillars. They pierce their prey with specialized mouthparts, effectively reducing caterpillar populations.

  • Mealybug control

    Mealybug control

    Biological control of mealybugs relies on beneficial organisms to maintain pest populations at manageable levels. Several key natural enemies play a crucial role in the biological control of mealybugs including parasitic wasps, predatory beetles and lacewings.

    Lacewings

    Chrysoperla carnea (Chrysopa, Chrysopa-E), commonly known as the green lacewing, is a voracious predator of mealybugs. The larvae of Chrysoperla carnea are particularly effective at hunting down and feeding on mealybug pests.

    Parasitic wasps

    Anagyrus vladimiri (Citripar), formerly known as Anagyrus pseudococci, is a parasitic wasp that specializes in controlling the citrus mealybug. Female Anagyrus vladimiri wasps lay their eggs inside mealybug nymphs, where the wasp larvae develop and eventually kill the host. By parasitizing citrus mealybugs, Anagyrus vladimiri helps control their populations naturally.

    Predatory beetles

    Cryptolaemus montrouzieri (Cryptobug, Cryptobug-L), often referred to as a ladybird beetle, is a beneficial insect known for its appetite for mealybugs. Both the larvae and adults of Cryptolaemus montrouzieri actively feed on mealybugs. These beetles are particularly effective at targeting mealybug colonies hidden in plant crevices or covered in waxy secretions. Introducing Cryptolaemus montrouzieri into affected areas can lead to effective and sustainable biological control of mealybugs, contributing to healthier plants in an environmentally friendly manner.

  • Leaf miner control

    Leaf miner control

    The management of leaf miner pests often requires sustainable and eco-friendly approaches. The parasitic wasp Diglyphus isaea and predatory bug Macrolophus pygmaeus, play crucial roles in controlling these leaf miner infestations.

    Parasitic wasps

    Diglyphus isaea (Diglyphus) is a parasitic wasp known for its effectiveness in controlling leaf miner populations. Adult Diglyphus isaea females lay their eggs next to leaf miner larvae. Once hatched, the wasp larvae consume the leaf miner's insides, eventually killing it.

    The parasitic wasp Dacnusa sibirica (Minusa) controls leafminers by parasitizing their larvae. The adult female wasp lays her eggs directly into the leafminer larvae. Once the wasp eggs hatch, the parasitic wasp larvae feed on the internal tissues of the leafminer larvae, eventually killing them.

    Predatory bugs

    Macrolophus pygmaeus (Mirical, Mirical-N) is a generalist predator that preys on various small insects, including leaf miner larvae. These predatory bugs actively feed on leaf miners and other pests, helping to keep their populations in check. Macrolophus pygmaeus is widely used in integrated pest management (IPM) programs to provide sustained control of leafminers while minimizing the need for chemical pesticides.

Diseases in vegetable crops

There are different types of diseases in vegetable crops that cause harm to the plants and its fruits. Common vegetable diseases are damping-off, fusarium wilt, cottony soft rot and more. Learn about these diseases so you can identify them and take early precautions.

Disease control in vegetable crops

Controlling diseases in vegetable crops is essential for maintaining crop health and ensuring a successful harvest. Disease management involves a combination of preventive measures, cultural practices, and, when necessary, the use of fungicides and other disease control products.

Biofungicides for disease management in vegetable crops

Biofungicides are an important tool in the arsenal of sustainable farming practices for controlling diseases in vegetable crops. Unlike synthetic fungicides, biofungicides are derived from natural sources and are designed to control fungal plant diseases while minimizing harm to the environment and human health.

Biofungicides, also known as biological fungicides, are formulations that harness the power of beneficial micro-organisms, such as fungi, and other natural components, to suppress or prevent fungal plant diseases.

Scouting and monitoring for pests and diseases

Scouting and monitoring are fundamental practices in integrated pest management (IPM) for cannabis growers. These proactive approaches involve regular and systematic inspection of crops to identify the presence and severity of pests and diseases. Growers use various techniques, including visual inspections, traps, and modern technologies like remote sensing and digital image analysis, to track potential threats.

Scouting typically begins before planting and continues throughout the growing season, with a focus on early detection. Early identification of pests and diseases allows for timely intervention, reducing the risk of widespread infestations or outbreaks. Monitoring involves recording data on pest and disease populations, their distribution, and environmental conditions. By identifying issues promptly, growers can minimize the impact on crop yield and quality while reducing the environmental footprint associated with chemical treatments.

Pheromone and lures (Pherodis, Lurem-TR, Attracker) in combination with traps (Deltatrap, Funnel Trap) or sticky traps (Horiver) play a crucial role in monitoring and scouting for plant pests in agriculture and horticulture. Rollertraps are used in case large numbers of whiteflies and thrips are present. These tools are designed to attract, capture, and help identify specific pests, allowing growers to assess pest populations and make informed management decisions.

Crop scouting with Natutec Scout

Using a crop scouting tool can lead to more effective, sustainable, and profitable crop production by providing precision pest monitoring and real-time pest detection alerts. Natutec Scout is a crop scouting tool for effective and efficient pest monitoring.

With Natutec Scout you can use your preferred scout method. Record scout observations by mobile phone manually or use the scanner for Horiver sticky cards for automatic detection of pests. The dashboard provides you with a complete overview of your scouting data which can be extended by uploading historical scouting observations. The real-time pest detection alerts let you stay ahead of potential crop damage.

Bumblebee pollination of vegetable crops

Bumblebees play a crucial role in the pollination of vegetable crops, ensuring the production of high-quality yields. Bumblebees are expert pollinators, exhibiting unique behaviors that make them exceptionally efficient in this vital task. Their fuzzy bodies attract pollen, allowing them to transport it from flower to flower. Unlike honeybees, bumblebees possess the ability to perform "buzz pollination." By vibrating their flight muscles, they dislodge pollen from certain flowers with exceptional precision, a technique particularly suited to crops like tomatoes, eggplants, and peppers.

Benefits of bumblebee pollination

  • Improved Fruit Set and Quality: Bumblebee pollination leads to more uniform and well-formed fruits, resulting in higher marketable yields for growers.
  • Increased Crop Yield: Research has consistently shown that bumblebee-pollinated crops yield more and larger fruits compared to those relying solely on wind or other less efficient pollinators.
  • Faster Fruit Maturation: Bumblebees facilitate quicker fruit development due to their efficient pollination techniques.
  • Enhanced Crop Consistency: Uniform fruiting, achieved through effective pollination, ensures a consistent supply for both farmers and consumers.
  • Genetic Diversity: Bumblebees, by visiting multiple flowers and plants, aid in cross-pollination, contributing to genetic diversity within the crop population.